The combination formula has immediate applications to a wide range of disciplines, including statistics, project management, computer science, and finance. The wide reach of the combination formula gives it an importance that demands greater study. In this paper we will study the combination formula in some depth to encourage an intuitive understanding of its behavior and computation.
A combination is an unordered subset of some set . There are several common notations for combinations, including:

 can be read “ combinations taken  at a time,” “ choose ,” or “ take .” There is a simple formula to compute , known as the combination formula or binomial coefficient, that we will introduce at the end of this chapter.
Consider a set . The cardinality (size) of this set is , so  for use in the combination formula. If we wish to divide  into subsets into unit size then the set containing all possible subsets is:

We can easily see that if we want subsets of size 1 then there are  possible ways to do this. We can generalize this to

for all positive integers . In the special case of  we say  because it is never possible to take more elements than are in a set. That is, .
The case  is worth investigating. If  then , an empty set. Given an input set with no elements, then there is only one way to combine the empty elements of this set into another set – also an empty set. So . In fact, the same logic applies for all . It also works for the case ; there is only one combination of a set that contains of its elements. Therefore

A string of bits can be used as a convenient method to represent the presence or absence of an element in a set. For  we need only six bits. We can easily iterate through all possible bit combinations to see that there are  possible combinations.
	000000
	001000
	010000
	011000
	100000
	101000
	110000
	111000

	000001
	001001
	010001
	011001
	100001
	101001
	110001
	111001

	000010
	001010
	010010
	011010
	100010
	101010
	110010
	111010

	000011
	001011
	010011
	011011
	100011
	101011
	110011
	111011

	000100
	001100
	010100
	011100
	100100
	101100
	110100
	111100

	000101
	001101
	010101
	011101
	100101
	101101
	110101
	111101

	000110
	001110
	010110
	011110
	100110
	101110
	110110
	111110

	000111
	001111
	010111
	011111
	100111
	101111
	110111
	111111


If  and  then there are 15 possible combinations of bit strings with a Hamming weight of two:

Notice that inverting all of these bits give the opposite combination.

With two bits set we represented all combinations with two elements chosen. By inverting each bit, we get all combinations with two elements not chosen. This generalizes to the identity

The sum of all possible combinations  for a set of size  is .

The case  has an intriguing relationship to the triangular numbers. If we start with  and select  then we must choose one of the remaining five elements. If we do not choose  and choose  then we must select one of the remaining four elements. If we choose neither  nor  but choose  then we must select one of the remaining three elements. This process continues until we choose  and have only  available to select. If we select no element before  then it is not possible to take two elements from a subset of size one (recall ). In general,


The final case we will consider before moving on to a general formula is for . For  we choose  and now must take two of the remaining five elements , which is given by . Next we eliminate  and choose  and take two of the remaining four elements , which is given by . We select  and are forced to take each element in , at which point no further combinations are possible. (Recall that in cases  we define ). We therefore realize  is actually the sum of triangular numbers.

We will construct a closed-form solution for  but first let us develop an intuition for its structure. Visualize each triangular sum  as a triangle of bricks with unit height. A stack of these bricks will form half of a pyramid. We can easily find the volume of a pyramid using calculus. Assuming the height  of a pyramid relates to its width  linearly by some constant  then the area . Then the volume of the pyramid with a square base is given by

If the pyramid has a triangular base instead of a square then  and the volume becomes

We expect to see a constant factor of  in any closed-form solution to . For finding a closed form sum of triangular numbers we need the identity

We prove this identity by induction. Given a basis of

Assume the induction hypothesis is true for some  and the sum is . Then at  the sum must be larger by .

We see that this sum is equal to the following which proves the induction hypothesis is true for all .

Armed with the identity for summing a series of squares we can now find

We now have identities for combinations with . We could continue creating additional identities but we now have enough information to recognize the behavior of the combination formula. Again, for the purposes of building intuition, consider the hypervolume of a series of  half pyramids arranged in ascending size. Though impossible to visualize, we can calculate the hypervolume using the repeated integral

Notice the denominator of the hypervolume is  in four dimensions. It was  in three dimensions, 2 in two dimensions, and unit in a single dimension. Further integration into increasingly high-dimensional space would increase the denominator in the hypervolume equation according to the power rule. We can also see a pattern in the numerator. At  the numerator was , for  the numerator was , and at  the numerator was .
We can also understand this behavior intuitively. At  we found  combinations.  because we don’t combine any element with itself (otherwise it would have been ) and  to deduplicate combinations with different orderings. In the combination formula we consider sets like , , , , , and  to be the same, hence we would divide by  in the case of . If we wanted to count all of these orderings then we simply would not divide by this factor. A counting of subsets where ordering matters is known as the permutation. In general, we can recursively define any combination by the sum of  combinations taken  at a time.

A recursive definition to calculate arbitrary combinations is equal to the canonical definition using factorials, known as the binomial coefficient identity.

Another recursive definition for finding combinations views the problem as a decision tree. Consider again  and the problem . We construct a binary tree rooted at the original problem , where we branch based on whether we choose or do not choose . If we choose  then we are left with  elements from which we must take . If we do not choose  then we must choose  elements from the remaining . Thus, .
At the next level of the decision tree we choose or do not choose . On one branch we had to choose two elements we now recurse to . On the other branch, where we had to choose three elements, we find . Recursion continues to base cases, such as  and . The combination formula constructed as a decision tree generalizes to an identity known as Pascal’s Formula.

Now let us consider the computational complexity on a computer.
First, we compute  directly.
def binomial(n, r, f):
    return f(n) // (f(r) * f(n - r))
The parameter f, in this context, refers to a factorial function that is specified by the caller. Using Python’s built in math.factorial function we easily construct Pascal’s Triangle.
import math

for n in range(10):
    print(*[binomial(n, r, math.factorial) for r in range(n+1)])
When executed, the program outputs Pascal’s Triangle:
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1
1 9 36 84 126 126 84 36 9 1
It is simple to implement our own naïve factorial function:
def _factorial(n):   
    return 1 if n == 0 else n * _factorial(n - 1)
We can compare the performance of the built in math.factorial function to our own implementation.
def benchmark(limit, f):
    start = timer()
    for n in range(limit):
        [binomial(n, r, f) for r in range(n+1)]
    end = timer()
    return end – start
When executed we find the built in math.factorial function is considerably faster than the naïve _factorial function we have built. This is actually quite common in programming. Developers of popular frameworks often invest in finding optimal approaches to computation that might not seem obvious. For example, it is faster in practice to compute factorials by divide and conquer rather than a straightforward multiplication.
>>> benchmark(100, _factorial)
0.19996605199412443
>>> benchmark(100, math.factorial)
0.02862050899420865
Interestingly, we can beat Python’s built in math.factorial easily with dynamic programming by memozing factorial calculations for later. Python has a very convenient syntax for caching results of pure functions.
from functools import lru_cache

@lru_cache(maxsize=1024)
def _factorial_dp(n):
    return 1 if n == 0 else n * _factorial_dp(n - 1)
This single directive instructs Python to check if an identical invocation to _factorial_dp has been cached and, if so, return this result immediately.
>>> _factorial_dp.cache_clear()
>>> _factorial_dp.cache_info()
CacheInfo(hits=0, misses=0, maxsize=1024, currsize=0)
>>> benchmark(100, _factorial_dp)
0.009150605008471757
>>> _factorial_dp.cache_info()
CacheInfo(hits=15149, misses=100, maxsize=1024, currsize=100)
Here we see that the use of dynamic programming saved 15149 invocations of the _factorial_dp function when calculating the first 100 rows of Pascal’s Triangle. The benefits of the dynamic programming approach become increasingly pronounced as the size of the input grows.
>>> _factorial_dp.cache_clear()
>>> benchmark(500, _factorial_dp)
1.2330169359920546
>>> benchmark(500, math.factorial)
5.665788909012917
>>> _factorial_dp.cache_clear()
>>> benchmark(600, _factorial_dp)
2.3750273040204775
>>> benchmark(600, math.factorial)
11.008371475007152
>>> _factorial_dp.cache_clear()
>>> benchmark(700, _factorial_dp)
4.588109176023863
>>> benchmark(700, math.factorial)
20.517555702012032
The dynamic programming approach can also be beneficial if we implement Pascal’s Formula. Again, we define a benchmarking procedure to measure the time necessary to complete the calculation. The benchmark accepts a “combiner” that will be used to calculate the first  rows of Pascal’s Triangle.
def benchmark_combination(limit, combiner):
    start = timer()
    for n in range(limit):
        [combiner(n, r) for r in range(n+1)]
    end = timer()
    return end – start

def combination(n, r):
    if r == 1:
        return n
    elif r > n:
        return 0
    elif r == 0 or r == n:
        return 1
    else:
        return combination(n-1, r-1) + combination(n-1, r)
To our horror we heuristically assess that the doubly-recursive combination function has exponential computational complexity.
>>> benchmark_combination(10, combination)
0.00042666701483540237
>>> benchmark_combination(15, combination)
0.01228521199664101
>>> benchmark_combination(20, combination)
0.2757053799869027
>>> benchmark_combination(25, combination)
8.162856736016693
Dynamic programming to the rescue!
@lru_cache(maxsize=65536)
def combination_dp(n, r):
    if r == 1:
        return n
    elif r > n:
        return 0
    elif r == 0 or r == n:
        return 1
    else:
        return combination_dp(n-1, r-1) + combination_dp(n-1, r)
We change nothing in the code but enable caching of results. The maxsize parameter controls how large the dictionary can grow. A larger dictionary is not strictly better in practice.
>>> benchmark_combination(1000, combination_dp)
0.6813005529984366
>>> combination_dp.cache_info()
CacheInfo(hits=995006, misses=500500, maxsize=65536, currsize=65536)
[bookmark: _GoBack]The memoized version of Pascal’s Formula outperforms even our memoized factorial function used in the binomial formula. Why? Pascal’s Formula consists only of addition, whereas the binomial formula requires a large factorial divided by another large factorial. Multiplication is generally quadratic,  in complexity (slightly faster with Karatsuba’s method) whereas addition is an  linear time operation. With dynamic programming we trade calculation for memory and reduce an exponential time algorithm to linear time.
