Matrix Tricks

August 18, 2019

1 Introduction

This document is my informal reference sheet for linear algebra topics that I should stop forgetting. Remember that the whole idea of this stuff is that $A x=b$. Given linear equations of the form

$$
\begin{equation*}
a x+b y=c \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
d x+e y=f \tag{2}
\end{equation*}
$$

we construct matrices as a shorthand for their coefficients:

$$
\left[\begin{array}{ll}
a & b \tag{3}\\
d & e
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=x\left[\begin{array}{l}
a \\
d
\end{array}\right]+y\left[\begin{array}{l}
b \\
e
\end{array}\right]=\left[\begin{array}{l}
c \\
f
\end{array}\right] .
$$

See [https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/video-lectures/lecture-1-the-geometry-of-linear-equations/].
[1]:

```
v = [i for i=1:3]
```

[1]: 3-element Array\{Int64,1\}:
1
2
3
[2]: m = [3(i-1) + j for $i=1: 3, j=1: 3]$
[2]: 3×3 Array\{Int64,2\}:
123
456
$\begin{array}{lll}7 & 8 & 9\end{array}$
[3]:

```
ones(Int,1,3)
```

[3]: 1×3 Array\{Int64,2\}:
111

2 Rotate or transpose a matrix

According to [https://math.stackexchange.com/questions/1945329/can-you-transpose-a-matrix-using-matrix-multiplication] and [https://math.stackexchange.com/questions/2816073/does-there-exist-2-matricies-such-that-they-can-be-used-to-transpose-any-n-by-n] this cannot be done with a cross product. For this, you need the help of your programming language.
[4]:

```
transpose(m)
```

[4]: 3×3 LinearAlgebra.Transpose\{Int64,Array\{Int64,2\}\}:
147
258
369
[5]: rot190(m)
[5]: 3×3 Array\{Int64,2\}:
369
258
147
[6]: $\operatorname{rotl90(\operatorname {rotl}90(m))}==\operatorname{rot} 180(\mathrm{~m})$
[6]: true
[7]: rotl90 (rotl90 (rotl90(m))) == rotr90(m)
[7]: true

3 Copy vectors

3.1 Duplicate a vector as columns

[8] :

```
v * ones(Int,1,3)
```

[8]: 3×3 Array\{Int64,2\}:
111
222
$3 \quad 3 \quad 3$

3.2 Duplicate a vector as rows

[9] :

```
ones(Int,3,1) * transpose(v)
```

[9]: 3×3 Array\{Int64,2\}:
123
123

123
3.3 Extract column 1 from a matrix
[10]: m * [1, 0, 0]
[10]: 3-element Array\{Int64,1\}:
1
4
7

3.4 Extract row 2 from a matrix

[11]: [0 1 0;] * m
[11]: 1×3 Array\{Int64,2\}:
456

4 Substitutions

4.1 Swap x and y of a vector
[12]:
[12]: 3-element Array\{Int64,1\}:
2
1
3
4.2 Swap rows 1 and 2 of a matrix
[13]: [0 1 0; 1 0 0; 0001$] * \mathrm{~m}$
[13]: 3×3 Array\{Int64,2\}:
456
123
$7 \quad 89$

4.3 Reverse rows

[14]: r = [0 0 1; 0 1 0; 1000
[14]: 3×3 Array\{Int64,2\}:
$0 \quad 0 \quad 1$
010
100
[15]: r * m
[15]: 3×3 Array\{Int64,2\}:
789
$4 \quad 5 \quad 6$
123

4.4 Reverse columns

[16]: m * r
[16]: 3×3 Array\{Int64,2\}:
$3 \quad 21$
$6 \quad 5 \quad 4$
$9 \quad 8 \quad 7$

4.5 Swap columns 1 and 2 of a matrix

(Remember when they said matrix multiplciation is not commutative?)
[17]:

```
m * [0 1 0; 1 0 0; 0 0 1]
```

[17]: 3×3 Array\{Int64,2\}:
213
546
879

5 Permutations

Generically, all of the above exchanges are called permutations. For a $n \times n$ matrix there are n ! such permutation (" P ") matrices. For $n=3$, these are:

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]} \\
& {\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]} \\
& {\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]} \\
& {\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]} \\
& {\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]}
\end{aligned}
$$

For all permutation matrices,

$$
\begin{equation*}
P^{-1}=P^{T} . \tag{4}
\end{equation*}
$$

Also notice that these matrices compose to each other.

6 Insertions

6.1 Append an empty row to the bottom
[18]: [1 0 0; 0 1 0; $001 ; 000]$ * m
[18]: 4×3 Array\{Int64,2\}:
123
456
$\begin{array}{lll}7 & 8 & 9\end{array}$
000

6.2 Insert an empty row to the top

[19]:

```
[0 0 0; 1 0 0; 0 1 0; 0 0 1] * m
```

[19]: 4×3 Array\{Int64,2\}:
000
123
456
$7 \quad 8 \quad 9$
6.3 Append an empty column to the right
[20] :
m * [1 $0000 ; 0100 ; 0010]$
[20]: 3×4 Array\{Int64,2\}:
1230
45650
$\begin{array}{llll}7 & 8 & 9 & 0\end{array}$
6.4 Insert an empty column to the left
[21]: m * [0 1 0 0; 0010 ; 00011$]$
[21]: 3×4 Array\{Int64,2\}:
0123
0456
$0 \quad 7 \quad 8 \quad 9$

7 Deletions

7.1 Clear rows 2 and 3 from a matrix
[22]:
[1 $000 ; 000 ; 000] * m$
[22]: 3×3 Array\{Int64,2\}:
123
000
000
7.2 Clear columns 2 and 3 from a matrix
[23]:
m * [1 $000 ; 000 ; 000]$
[23]: 3×3 Array\{Int64,2\}:
100
400
700
7.3 Drop the right column
[24]:

```
m * [1 0; 0 1; 0 0]
```

[24]: 3×2 Array\{Int64,2\}:
12
45
78

7.4 Drop the center column

[25] :

```
m * [1 0; 0 0; 0 1]
```

[25]: 3×2 Array\{Int64,2\}:
13
46
79

7.5 Drop the left column

[26]:
m * [0 0; 1 0; 0 1]
[26]: 3×2 Array\{Int64,2\}:
23
56
89

7.6 Drop the bottom row

[27]: [1 $000 ; 0110] * \mathrm{~m}$
[27]: 2×3 Array\{Int64,2\}:
123
456

7.7 Drop the center row

[28]:
$\left[\begin{array}{llllll}1 & 0 & 0 ; & 0 & 0 & 1\end{array}\right] * m$
[28]: 2×3 Array\{Int64,2\}:
123
$7 \quad 8 \quad 9$

7.8 Drop the top row

[29]:

```
[0 1 0; 0 0 1] * m
```

[29]: 2×3 Array\{Int64,2\}:
456
789
You can achieve the same results by composing transposition with a single drop function. For example, transpose rows 2 and 3, then drop row 3. This has the same effect as dropping the center row. Remember, order of operations matters.
[30]:
[1 0 0; 0 1 0] * [1 0 0; 001 ; 0 1 0] * m
[30]: 2×3 Array\{Int64,2\}:
123
$7 \quad 89$
Another way to think about this is that the "drop row 3 " and "transpose rows 2 and 3 " matrices compose, which is identical to the "drop row 2 " matrix.
[31]:

```
[1 0 0; 0 1 0] * [1 0 0; 0 0 1; 0 1 0}
```

[31]: 2×3 Array $\{\operatorname{Int} 64,2\}:$
100
$0 \quad 0 \quad 1$

8 Affine Transforms (2D)

Suppose you begin with $B v$. Then an affine transform $A B v$ occurs in global coordinate space, and an affine transform $B C v$ occurs in the object's local coordinate space. See [http://math.hws.edu/graphicsbook/c2/s3.html].

8.1 Scaling

$$
S_{a, b}=\left[\begin{array}{lll}
a & 0 & 0 \tag{5}\\
0 & b & 0 \\
0 & 0 & 1
\end{array}\right]
$$

8.2 Rotation

We use Ptolemy's Sum and Difference Formulae

$$
\begin{align*}
& \cos \alpha \pm \beta=\cos \alpha \cos \beta \mp \sin \alpha \sin \beta \tag{6}\\
& \sin \alpha \pm \beta=\cos \alpha \sin \beta \pm \sin \alpha \cos \beta \tag{7}
\end{align*}
$$

in order to increase the rotation of a vector from some initial angle α by β :

$$
R_{\beta}\left[\begin{array}{c}
k \cdot \cos \alpha \tag{8}\\
k \cdot \sin \alpha \\
1
\end{array}\right]=R_{\beta} k\left[\begin{array}{c}
k \cdot \cos \alpha \\
k \cdot \sin \alpha \\
1 / k
\end{array}\right]=k\left[\begin{array}{c}
\cos \alpha+\beta \\
\sin \alpha+\beta \\
1 / k
\end{array}\right]=\left[\begin{array}{c}
k \cdot \cos \alpha+\beta \\
k \cdot \sin \alpha+\beta \\
1
\end{array}\right] .
$$

The matrix which delivers this behavior is

$$
R_{\Theta}=\left[\begin{array}{ccc}
\cos \Theta & -\sin \Theta & 0 \tag{9}\\
\sin \Theta & \cos \Theta & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

8.3 Translation

$$
T_{a, b}=\left[\begin{array}{ccc}
1 & 0 & a \tag{10}\\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right]
$$

9 Gaussian Elimination

Augment the coefficient matrix with the b column vector.

$$
A x=b \rightarrow\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \tag{11}\\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right] \rightarrow\left[\begin{array}{ccccc}
a_{11} & a_{12} & \ldots & a_{1 n} & b_{1} \\
a_{21} & a_{22} & \ldots & a_{2 n} & b_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n} & b_{n}
\end{array}\right]
$$

Subtract rows from one another, rearranging rows as needed, until the matrix is in upper triangular form. See [http://mathworld.wolfram.com/GaussianElimination.html].
[32]:

```
g = [9 3 4 7; 4 3 4 8; 1 1 1 3]
```

[32]: 3×4 Array\{Int64,2\}:
$\begin{array}{llll}9 & 3 & 4 & 7\end{array}$
$\begin{array}{llll}4 & 3 & 4 & 8\end{array}$
$\begin{array}{llll}1 & 1 & 1 & 3\end{array}$

The bottom row is very convenient, so switch the first and third rows.
[33]:

```
[0 0 1; 0 1 0; 1 0 0] * g
```

[33]: 3×4 Array\{Int64,2\}:

1	1	1	3
4	3	4	8
9	3	4	7

Subtract four times the first row from the second.

[34]: 3×4 Array\{Int64,2\}:

1	1	1	3
0	-1	0	-4
9	3	4	7

This gives a "nice" result of one variable that we could have used to reduce our problem immediately, but we would still have to solve for x and z.
Subtract nine times the first row from the third.
[35]:
[35]: 3×4 Array\{Int64,2\}:

1	1	1	3
0	-1	0	-4
0	-6	-5	-20

Subtract six times the second row from the third.
[36]: \square

$\rightarrow 1 ; 010 ; 100] * g$
[36]:
1113
$\begin{array}{llll}0 & -1 & 0 & -4\end{array}$
$\begin{array}{llll}0 & 0 & -5 & 4\end{array}$

Now we see $-5 z=4,-y+0 z=-4$, and $x+y+z=3$, which give $z=-4 / 5, y=4$, and $x=-1 / 5$.

9.1 Left Division Operator

Julia contains a built-in "left division operator" (\backslash) for this purpose.
[37]:

```
round.([9 3 4; 4 3 4; 1 1 1] \ [7; 8; 3],digits=2)
```

[37]: 3-element Array\{Float64,1\}:
-0.2
4.0
-0.8

9.2 Units

This is a general reminder to be very cautious with units. Example TMP at [http://linear.ups.edu/html/section-SSLE.html] gives a system of linear equations
$\left[\begin{array}{ccc}7 \mathrm{~kg} / \mathrm{batch} \text { of raisins } & 6 \mathrm{~kg} / \mathrm{batch} \text { of raisins } & 2 \mathrm{~kg} / \mathrm{batch} \text { of raisins } \\ 6 \mathrm{~kg} / \mathrm{batch} \text { of peanuts } & 4 \mathrm{~kg} / \mathrm{batch} \text { of peanuts } & 5 \mathrm{~kg} / \mathrm{batch} \text { of peanuts } \\ 2 \mathrm{~kg} / \mathrm{batch} \text { of chocolate } & 5 \mathrm{~kg} / \mathrm{batch} \text { of chocolate } & 8 \mathrm{~kg} / \mathrm{batch} \text { of chocolate }\end{array}\right]$
$\left[\begin{array}{c}b \text { batches of bulk trail mix } \\ s \text { batches of standard trail mix } \\ f \text { batches of fancy trail mix }\end{array}\right]=\left[\begin{array}{c}380 \mathrm{~kg} \text { of raisins } \\ 500 \mathrm{~kg} \text { of peanuts } \\ 620 \mathrm{~kg} \text { of chocolate }\end{array}\right]$

This is straightfoward to solve, but the question is looking for answers in kilograms.
[38]:

```
round.([7 6 2; 6 4 5; 2 5 8] \ [380; 500; 620])
```

[38]:

```
    3-element Array{Float64,1}:
```

 20.0
 20.0
 60.0
 To get to the answer, we needed to know $15 \mathrm{~kg}=1$ batch, so $\left[\begin{array}{l}b \\ s \\ f\end{array}\right]$ should actually be $15 \times$ the amount calculated.

Again, what we solved was

$$
\begin{equation*}
[\mathrm{kg} / \text { batch }][\text { batches }]=[\mathrm{kg}] \tag{13}
\end{equation*}
$$

when the question really needs

$$
\begin{equation*}
[\text { units }][\mathrm{kg}]=[\mathrm{kg}] . \tag{14}
\end{equation*}
$$

[39]:

```
round.(([7 6 2; 6 4 5; 2 5 8]) / 15 \ [380; 500; 620])
```

[39]: 3-element Array\{Float64,1\}:
300.0
300.0
900.0

10 Inversions

10.1 Not all matrices are invertible

Let us assume, for the sake of contradiction, that there exists some matrix A^{-1} for the matrix $A=\left[\begin{array}{ll}1 & 3 \\ 2 & 6\end{array}\right]$. Observe that $\left[\begin{array}{ll}1 & 3 \\ 2 & 6\end{array}\right]\left[\begin{array}{c}3 \\ -1\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$. If A^{-1} exists, then $A^{-1} A\left[\begin{array}{c}3 \\ -1\end{array}\right]=A^{-1}\left[\begin{array}{l}0 \\ 0\end{array}\right]$, which implies $\left[\begin{array}{c}3 \\ -1\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$. This is a contradiction, therefore it must not be true that all matrices are invertible.
(The key to this proof is to find some x such that $A x=0$).
See
[https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/video-lectures/lecture-3-multiplication-and-inverse-matrices/].

10.2 Invert a Matrix

Let $A=\left[\begin{array}{ll}1 & 3 \\ 2 & 7\end{array}\right]$. We want to find $A^{-1}=\left[\begin{array}{ll}a & c \\ b & d\end{array}\right]$ such that $A A^{-1}=I$. Then

$$
\begin{align*}
{\left[\begin{array}{ll}
1 & 3 \\
2 & 7
\end{array}\right]\left[\begin{array}{ll}
a & c \\
b & d
\end{array}\right] } & =\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \tag{15}\\
{\left[\begin{array}{ll}
1 & 3 \\
2 & 7
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right] } & =\left[\begin{array}{l}
1 \\
0
\end{array}\right] \tag{16}\\
{\left[\begin{array}{ll}
1 & 3 \\
2 & 7
\end{array}\right]\left[\begin{array}{l}
c \\
d
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
1
\end{array}\right] \tag{17}
\end{align*}
$$

which produces the linear equations

$$
\begin{align*}
& 1 a+3 b=1 \tag{18}\\
& 2 a+7 b=0 \tag{19}\\
& 1 c+3 d=0 \tag{20}\\
& 2 c+7 d=1 \tag{21}
\end{align*}
$$

which we can solve!
[40]: [1 3; 2 7] \ [1; 0]
[40]: 2-element Array\{Float64,1\}:
7.0
-2.0

[41]: [1 3; 2 7] \[0; 1]
[41]: 2-element Array\{Float64,1\}:
-3.0
1.0
[42]: [1 3; 2 7] * hcat([7; -2], [-3, 1])
[42]: 2×2 Array\{Int64,2\}:
10
01

10.3 Gauss-Jordan

Gauss-Jordan lets you do this by hand by performing elimination "downwards" and then again "upwards" with your coefficient matrix augumented with a complete identity. It looks like:

$$
E\left[\begin{array}{llll}
a & c & 1 & 0 \tag{22}\\
b & d & 0 & 1
\end{array}\right]=E\left[\begin{array}{ll}
A & I
\end{array}\right]=\left[\begin{array}{ll}
I & A^{-1}
\end{array}\right]
$$

