Advent of Code 2020 Day 1 in SQL

William John Holden

2 December 2020

Advent of Code

Advent of Code is a Christmas-themed series of computer programming puzzles created by Eric Wastl. You
can complete these puzzles in any programming language you wish, and on day 1 of 2020 I gave SQL a try.

SQL might not be an obvious language for puzzles more commonly solved with general-purpose languages
like Java, JavaScript, C++, C#, Python, etc. The reason I wanted to use SQL for this particular problem is
that the problem is so easily formulated in a declarative language.

Declarative programming is yet another programming paradigm, just like procedural (imperative) program-
ming, functional programming, object-oriented programming. Unlike imperative programming, where you
tell the machine what to do, in declarative programming you tell the machine what you want.

Part 1 of day 1 asks us to find, in a set of integers, the product zy from a pair = and y where x + y = 2020.
Let’s look at that sentence again.

Find the product
from a set
where x + y = 2020

The sentence itself is is so close to real SQL that the solution is very clear! Let’s dive in.

(A note to the reader: some of the code listings are given in extremely small fonts to fit wide output to on
the page. Please use the zoom on your PDF reading software.)

Setting things up

OK, first let’s set a few things up to do this.

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 32
Server version: 8.0.22-Oubuntu0.20.04.2 (Ubuntu)

Copyright (c) 2000, 2020, Oracle and/or its affiliates. All rights reserved.
Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective

owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql> CREATE DATABASE AOC;
Query 0K, 1 row affected (0.03 sec)

https://adventofcode.com
https://twitter.com/ericwastl

mysql> USE AOC;

Database changed

mysql> CREATE TABLE Dayl (x INTEGER);
Query 0K, O rows affected (0.07 sec)

mysql> SHOW COLUMNS IN Dayi;

mm e Fmmm—mm o et pmmmm o Fmm e +
| Field | Type | Null | Key | Default | Extra |
et o o et Fmmmm e +
| x | int | YES | | NULL |

Hmmmm o o e et pommm e Fommm oo +

1 row in set (0.01 sec)

Here we have created a database named AOC and a table named Day1. The table contains a single integer
value named x.

Now we need the puzzle data. Your data will be different from mine but it should not matter. I used this
PowerShell command to format my input as SQL queries.

PS> Get-Content -Path .\input.txt | ForEach-Object { "INSERT INTO Dayl VALUES ($($_));" }
INSERT INTO Dayl VALUES (1974);

INSERT INTO Dayl VALUES (1902);

INSERT INTO Dayl VALUES (1356);

(Output truncated)

Paste those INSERT commands into MySQL and we are good to go.
mysql> SELECT COUNT(*) FROM Day1i;

Fom——————— +
| COUNT(*) |
Fm————————— +
I 200 |
Fm——————— +

1 row in set (0.00 sec)

Day 1 Part 1

Now that we have the values in the database we can solve this problem declaratively. To do so we will self-join
the Dayl table to itself. We won’t specify a join condition, so this is actually just the Cartesian Product
Dayl X Dayl.

mysql> SELECT COUNT(*) FROM Dayl AS X, Dayl AS Y;

Fm——————— +
| COUNT (%) |
Fom——————— +
| 40000 |
Fmm———————— +

1 row in set (0.01 sec)

The join contains 2002 = 40000 tuples. The AS keyword aliases Day1 since we will need to distinguish values
from the left and right relations.

mysql> SELECT X.x, Y.x, X.x + Y.x, X.x * Y.x
-> FROM Dayl AS X, Dayl AS Y
-> WHERE X.x + Y.x = 2020;

F—————- +————— e Fomm +

| x | x | X.x + Y.x | Xox *x Y.x |

Fm———— Fm———— Fm—————————— e ————————— +
| 196 | 1824 | 2020 | 357504 |
| 1824 | 196 | 2020 | 357504 |
+————— +————— Fm———————— o +

2 rows in set (0.00 sec)

And there’s your answer for part 1.

Day 1 Part 2

Part 2 twists the problem by asking for the product zyz from a triple x, y, and z such that x + y + z = 2020.
For this, we will need two self-joins.

mysql> SELECT COUNT(*) FROM Dayl AS X, Dayl AS Y, Dayl AS Z;

1 row in set (0.00 sec)

Now, 2002 = 8000000 is a lot of possible combinations, but it is still small enough that we can compute it
directly on a modern computer.

mysql> SELECT X.x, Y.x, Z.x, X.x + Y.x + Z.x, X.x * Y.x * Z.x
-> FROM Dayl AS X, Dayl AS Y, Dayl AS Z
-> WHERE X.x + Y.x + Z.x = 2020;

R - TR — R - T — e +
| x | x | x | X.x +Y.x +Z.x | X.x *x Y.x * Z.x |
fm——— e fm———— e e +
694	14	1312	2020	12747392
1312	14	694	2020	12747392
694	1312	14	2020	12747392
14	1312	694	2020	12747392
1312	694	14	2020	12747392
14	694	1312	2020	12747392
o e e e e +

6 rows in set (0.41 sec)

A faster query

The part 2 solution completed in 0.41 seconds. Can we do better? Yes, we can! If we give the WHERE clause a
little bit more information we can reduce the size of the join buffers along the way.

mysql> SELECT X.x, Y.x, Z.x, X.x + Y.x + Z.x, X.x * Y.x * Z.x
-> FROM Dayl AS X, Dayl AS Y, Dayl AS Z
-> WHERE X.x + Y.x + Z.x = 2020
-> AND X.x + Y.x < 2020;

O e O e e +
| x | x | x | X.x +Y.x +Z.x | X.x *x Y.x * Z.x |
fm————— R fm————— R e +
1312	694	14	2020	12747392
694	1312	14	2020	12747392
14	694	1312	2020	12747392
694	14	1312	2020	12747392

| 14 | 1312 | 694 | 2020 | 12747392 |
| 1312 | 14 | 694 | 2020 | 12747392 |
6 rows in set (0.02 sec)

The additional clause specifies that = + y < 2020. The machine does not assume that z is a nonnegative
integer, but we know this from the problem statement and can specify this invariant. Now the query completes
in only 0.02 seconds!

Join Plans

Let’s take a closer look at how those joins will work.

mysql> EXPLAIN SELECT X.x, Y.x, Z.x, X.x + Y.x + Z.x, X.x * Y.x *x Z.x FROM Dayl AS X, Dayl AS Y, Dayl AS Z WHERE X.x + Y.x + Z.x = 2020;

| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra

| 1 | SIMPLE | X | NULL | ALL | NULL | NULL | NULL | NULL | 200 | 100.00 | NULL

| 1| SIMPLE Iy | NULL | ALL | NULL | NULL | NULL | NULL | 200 | 100.00 | Using join buffer (hash join)

| 1 | SIMPLE |z | NULL | ALL | NULL | NULL | NULL | NULL | 200 | 100.00 | Using where; Using join buffer (hash join)

3 rows in set, 1 warning (0.00 sec)

mysql> EXPLAIN SELECT X.x, Y.x, Z.x, X.x + Y.x + Z.x, X.x * Y.x *x Z.x FROM Dayl AS X, Dayl AS Y, Dayl AS Z WHERE X.x + Y.x + Z.x = 2020 AND X.x + Y.x < 2020;

| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra

| 1| SIMPLE | X | NULL | ALL | NULL | NULL | NULL | NULL | 200 | 100.00 | NULL

| 1| SIMPLE Iy | NULL | ALL | NULL | NULL | NULL | NULL | 200 | 100.00 | Using where; Using join buffer (hash join)
| 1| SIMPLE |z | NULL | ALL | NULL | NULL | NULL | NULL | 200 | 100.00 | Using where; Using join buffer (hash join)

3 rows in set, 1 warning (0.00 sec)

Another idea to improve performance is to set Dayl.x as an indexed column.

mysql> SHOW COLUMNS IN Dayi;

| Field | Type | Null | Key | Default | Extra

| x | int | YES | | NULL | |

1 row in set (0.00 sec)

mysql> SHOW INDEXES FROM Dayl;
Empty set (0.00 sec)

mysql> ALTER TABLE Dayli ADD PRIMARY KEY (x);
Query OK, 0 rows affected (0.08 sec)

Records: O Duplicates: 0 Warnings: O

mysql> SHOW COLUMNS IN Dayl;

| Field | Type | Null | Key | Default | Extra |

| x | int | NO | PRI | NULL |

1 row in set (0.00 sec)

mysql> SHOW INDEXES FROM Dayl;

| Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment | Visible | Expression

| Day1l | 0 | PRIMARY | 11 x | A | 200 | NULL | NULL | | BTREE | | | YES | NULL

1 row in set (0.01 sec)

Now the query plans can use indexed joins throughout.

mysql> EXPLAIN SELECT X.x, Y.x, Z.x, X.x + Y.x + Z.x, X.x * Y.x * Z.x
FROM Dayl AS X, Dayl AS Y, Dayl AS Z
-> WHERE X.x + Y.x + Z.x = 2020;

v

| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
| 1 | SIMPLE | X | NULL | index | NULL | PRIMARY | 4 | NULL | 200 | 100.00 | Using index
| 1| SIMPLE 1y | NULL | index | NULL | PRIMARY | 4 | NULL | 200 | 100.00 | Using index; Using join buffer (hash join)
| 1| SIMPLE 1z | NULL | index | NULL | PRIMARY | 4 | NULL | 200 | 100.00 | Using where; Using index; Using join buffer (hash join)
3 rows in set, 1 warning (0.00 sec)
mysql> EXPLAIN SELECT X.x, Y.x, Z.x, X.x + Y.x + Z.x, X.x * Y.x * Z.x
-> FROM Dayl AS X, Dayl AS Y, Dayl AS Z
-> WHERE X.x + Y.x + Z.x = 2020
-> AND X.x + Y.x < 2020;
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
| 1| SIMPLE I x | NULL | index | NULL | PRIMARY | 4 | NULL | 200 | 100.00 | Using index
| 1| SIMPLE 1y | NULL | index | NULL | PRIMARY | 4 | NULL | 200 | 100.00 | Using where; Using index; Using join buffer (hash join)
| 1| SIMPLE 1z | NULL | index | NULL | PRIMARY | 4 | NULL | 200 | 100.00 | Using where; Using index; Using join buffer (hash join)

3 rows in set, 1 warning (0.01 sec)

Performance is slightly improved.

mysql> SELECT X.x, Y.X, Z.X, X.X + Y.x + Z.X, X.X * Y.x * Z.x
-> FROM Dayl AS X, Dayl AS Y, Dayl AS Z
-> WHERE X.x + Y.x + Z.x = 2020;

I x | x | x | Xox + Yox + Z.x | Xox * Yox x Z.x |
1312 694 | 14 | 2020 12747392
1312 14 | 694 | 2020 12747392

14
694
694

14

694 | 1312 | 2020

14 | 1312 | 2020
1312 | 14 | 2020
1312 | 694 | 2020

12747392
12747392
12747392
12747392

mysql>

->
->
->

in set (0.37 sec)

SELECT X.x, Y.x, Z.x, X.x + Y.x
FROM Dayl AS X, Dayl AS Y, Dayl
WHERE X.x + Y.x + Z.x = 2020
AND X.x + Y.x < 2020;

+Z.x, X.x * Y.x % Z.x

AS Z

x

| X.ox * Yox * Z.x |

694
1312
14
1312
14
694

x I x | Xox + Y.x + Z.x
1312 | 14 | 2020
694 | 14 | 2020

1312 | 694 | 2020
14| 694 | 2020

694 | 1312 | 2020
14 | 1312 | 2020

12747392
12747392
12747392
12747392
12747392
12747392

6 rows in set (0.01 sec)

The fastest query: LIMIT 1

The puzzle can be solved even faster! For this particular problem we do not care about all solutions x, y, and
z. We only need one solution. So, if we use LIMIT 1 we allow the machine to immediately stop computing
once it finds a single satisfying triple.

This was not my idea, but rather came from a helpful comment from Reddit. One of the best reasons to
participate in Advent of Code is its positive and helpful community.

mysql> SELECT X.x, Y.x, Z.x, X.x + Y.x + Z.x, X.x * Y.x * Z.x
-> FROM Dayl AS X, Dayl AS Y, Dayl AS Z
-> WHERE X.x + Y.x + Z.x = 2020
-> LIMIT 1;
+————— +————= e B it o +
X | x | x | X.x+Y.x+Z.x | X.x*x Y.x *x Z.x |
+——— +———— B s o +
1312 | 694 | 14 | 2020 | 12747392 |
+——— +———— B s e et Fom +

1 row in set (0.01 sec)

mysql> SELECT X.x, Y.x, Z.x, X.x + Y.x + Z.x, X.x * Y.x * Z.x
-> FROM Dayl AS X, Dayl AS Y, Dayl AS Z
-> WHERE X.x + Y.x + Z.x = 2020
-> AND X.x + Y.x < 2020
-> LIMIT 1;
= B e o +
X | x | x | X.x+Y.x+Z.x | X.x*x Y.x * Z.x |
+——— +————— B . +
694 | 1312 | 14 | 2020 | 12747392 |
+———— +o————— e B ittt Fom +

1 row in set (0.00 sec)

Happy holidays!

	Advent of Code
	Setting things up
	Day 1 Part 1
	Day 1 Part 2
	A faster query
	Join Plans
	The fastest query: LIMIT 1

