
Impressions of R from an Introductory Course on Statistics

William John Holden

10 May 2020

library(readxl)
library(ggplot2)
library(dplyr)
library(tidyr)
library(comprehenr)
library(knitr)

Introduction
Over the past eight weeks I took Introduction to Statistics (STAT 200) at the University of Maryland Global
Campus (UMGC). My bachelor’s program in computer science did not require a course in statistics and I felt
this was something I needed before applying to graduate school.

UMGC teaches STAT200 from the second edition of Statistics Using Technology by Kathryn Kozak. UMGC
does not require the use of any specific technology for this course. The textbook shows functions from a
Texas Instruments calculator. You could probably get away with Microsoft Excel if you are very clever. I
took this opportunity to learn R.

I would rate my own skill in computer programming somewhere above novice but below intermediate. My
day job is in computer networking, where I do not write code every day. Most of my programs are in (in
descending order of strength) Java, Julia, JavaScript, and Mathematica.

This document is a summary of my experience self-teaching R. I did not bother trying to learn R as a
general-purpose programming language and I have no intention to use R for Advent of Code. I think of R
as a domain-specific language for doing statistics. I would never consider R for building a web application,
video game, desktop application, or network service.

RStudio
I used a program called RStudio. There is a no-cost, open-source version of RStudio Desktop. Before you
install RStudio you will need the core R language, which you can download from CRAN.

RStudio is great. The core R language is a REPL. RStudio provides both a code view and console view
that allow you to effortlessly switch from REPL to code. RStudio’s graphical user interface provides view of
your environment variables, which feels a little bit like a debugger in a standard IDE. RStudio prominently
features a view for plots, which makes sense for a product aimed at statisticians.

R Markdown
R Markdown is a “killer app.” R Markdown is a notebook interface where you mix prose, mathematical
notation, code, and code output. RStudio can output to LaTeX. If you already know LaTeX then you can
less R Markdown in about 2 minutes (which includes the 60 seconds to learn Markdown.

1

https://www.coconino.edu/open-source-textbooks
https://adventofcode.com
https://rstudio.com
https://rstudio.com/products/rstudio
https://www.r-project.org/
https://cran.r-project.org/mirrors.html
https://rmarkdown.rstudio.com
https://commonmark.org

Cosma Shalizi has an introduction to R Markdown at Using R Markdown for Class Reports.

The other two notebook interfaces I have used are Mathematica and Jupyter. Mathematical notation is
important to me. I hated the palettes in Mathematica. I never memorized the keyboard shortcuts and the
graphical user interface was painfully slow and difficult to use. The equation editor in Microsoft Office is
easier to use. I had no trouble learning Jupyter because I had already invested in learning LaTeX. I recent
watched an excellent talk by Joel Grus called “I don’t like notebooks”. Grus’ chief frustration with notebooks
is hidden and confusing state, such as out-of-order evaluation. I think RStudio users might be less likely to
encouter these problems than Jupyter users. An RStudio user is likely to try their computation at the console
first, then save their history to an R Script when they are satisfied with their result. Using the environment as
a debugger to look for a missing step should be a natural first step if the R Script does not work as expected.

R Markdown manages to put together a lot of things that worked in the industry. Prose, code, and plots are
easily blended, just like Mathematica Jupyter notebooks. The source document is plain text and is readable
in this form. Finally, you can use LaTeX to typeset beautiful math.

Reading Data
RStudio has a very useful Import Dataset feature. You can use this feature to navigate to a file, such as an
Excel spreadsheet, containing your data, view the columns. The feature shows the R source code needed to
produce the result you see on the screen. readxls is slick. For example:
library(readxl)
CrossFit <- read_excel("CrossFit.xlsx")
kable(CrossFit)

Study.Authors Year x.Male x.Female x n.Male n.Female n Incidence
Hak, Hodzovic, & Hickey 2013 NA NA 97 NA NA 132 3.10
Giordano & Weisenthal 2014 NA NA NA NA NA 386 2.40
Weisenthal et al. 2014 53 21 75 231 150 386 NA
Chachula, Cameron, & Svoboda 2015 NA NA 24 40 14 54 NA
Aune & Powers 2016 52 33 85 142 105 247 2.71
Sprey et al. 2016 109 67 176 323 243 566 NA
Summitt et al. 2016 NA NA 44 NA NA 187 1.94
Mehrab et al. 2017 157 95 252 266 183 449 NA
Montalvo et al. 2017 30 20 50 94 97 191 2.30
Moran et al. 2017 NA NA NA 66 51 117 2.10
Feito, Burrows, & Tabb 2018 495 436 931 1566 1483 3049 0.74
Tafuri et al. 2019 NA NA 181 325 129 454 NA
da Costa et al. 2019 89 68 157 243 171 414 3.24
Minghelli & Vicente 2019 NA NA 61 152 118 270 1.34
Alekseyev et al. 2020 198 97 295 589 296 885 NA
Larsen et al. 2020 NA NA 25 51 117 168 10.60
Szeles et al. 2020 NA NA NA 198 208 406 18.90

The kable function helps format a data frame into a format that looks nice in LaTeX. In RStudio you can
call View (with capital “V”) or enter the name of your variable into the console and press enter.

Tidyverse
Getting data into any computing environment can be difficult. During Advent of Code 2019 I felt Julia made
importing plaintext input fairly easy with its readdlm. I had a less positive experience of Mathematica’s
Import command in Advent of Code 2018. Granted, I did not use R for general-purpose computing.

2

https://www.stat.cmu.edu/~cshalizi/rmarkdown
https://www.nyu.edu/projects/beber/files/Wilkins_Getting_Started_with_LaTeX.pdf
https://www.youtube.com/watch?v=7jiPeIFXb6U
https://github.com/wjholden/Advent-of-Code-2019
https://wjholden.com/aoc/2018/

Getting data into a usable format for R can be difficult and tedious. I recommend watching this four-video
series called “Data Wrangling with R and the Tidyverse” by Garrett Grolemund:

1. Introduction to Data Wrangling
2. Tidy Data and tidyr
3. Data Manipulation Tools: dplyr
4. Working with Two Datasets: Binds, Set Operations, and Joins

Tidyverse refers to to a collection of R packages that work well together to manipulate and visualize data.
The two packages that I mainly used in STAT200 were dplyr and ggplot2.

%>%

One of my favorite features in the Tidyverse is the %>% operator. This operator pipes input from the last
command as an anonymous variable and supplies this anonymous variable as the first parameter of the next
function. So, g(f(x, y), z) is semantically the same as f(x, y) %>% g(z). This may look strange but it
very easy to use in practice.

I really like pipelines in bash and Powershell. Let’s compare the sum of the square roots of five random
numbers using a pipeline in a few programming languages.

5∑
i=1

√
Random[0, 1]

Java 8’s Stream API can do this in a predictably verbose form.

DoubleStream.generate(Math::random).limit(5).map(Math::sqrt).sum()

JavaScript truly is a Lisp in C’s clothing.

Array.from({length: 5}, Math.random).map(Math.sqrt).reduce((a,b) => a + b, 0)

Julia has a weird |> operator, but you have to explicitly state the name of variables passed to some functions.
All of these do the same thing:

rand(5) |> x -> map(sqrt, x) |> sum
rand(5) |> x -> sqrt.(x) |> sum
sum(map(sqrt, rand(5)))
sum(sqrt.(rand(5)))

Julia’s sqrt function is not vectorized. sqrt expects a single value; you can map or the dot syntax to apply a
function element-wise against an array.

Here is the R version:
sum(sqrt(runif(5)))

[1] 3.198304
runif(5) %>% sqrt() %>% sum()

[1] 3.064623

Vectorized Functions
The sqrt function in R is built on an assumption that, if given a list, it should operate element-wise and
return a list of the same length. Many of R’s built-in functions are vectorized:
1:10 + 0

[1] 1 2 3 4 5 6 7 8 9 10

3

https://www.youtube.com/watch?v=jOd65mR1zfw
https://www.youtube.com/watch?v=1ELALQlO-yM
https://www.youtube.com/watch?v=Zc_ufg4uW4U
https://www.youtube.com/watch?v=AuBgYDCg1Cg
https://www.tidyverse.org
https://www.tidyverse.org/packages
https://dplyr.tidyverse.org
https://ggplot2.tidyverse.org
https://docs.oracle.com/javase/8/docs/api/java/util/stream/package-summary.html
https://www.crockford.com/javascript/javascript.html
https://docs.julialang.org/en/v1/manual/functions/#man-vectorized-1

1:10 * runif(10)

[1] 0.9666563 1.2549697 2.2737568 2.1937730 2.5378871 1.4670244 3.9905612
[8] 6.8578826 6.7414081 3.1413934
exp(1:10) / 2^(1:10)

[1] 1.359141 1.847264 2.510692 3.412384 4.637911 6.303575 8.567447
[8] 11.644367 15.826336 21.510221

If one vector is longer than the other then R will wrap around and reuse values from the shorter vector. This
is completely different from Python’s Python’s zip function.
1:10 + 1:9 + 1:8

Warning in 1:10 + 1:9: longer object length is not a multiple of shorter object
length

Warning in 1:10 + 1:9 + 1:8: longer object length is not a multiple of shorter
object length

[1] 3 6 9 12 15 18 21 24 19 13

dplyr

Some of the functions that I found especially useful in dplyr are arrange, filter, select, mutate, and
summarize. There are many more powerful and highly composable functions in dplyr, such as pivot_longer
(gather) and pivot_wider (spread), but I did not use them as often.

arrange

Sort the studies in descending order by year, then alphabetically by the authors’ names.
CrossFit %>% arrange(-Year, Study.Authors) %>% kable()

Study.Authors Year x.Male x.Female x n.Male n.Female n Incidence
Alekseyev et al. 2020 198 97 295 589 296 885 NA
Larsen et al. 2020 NA NA 25 51 117 168 10.60
Szeles et al. 2020 NA NA NA 198 208 406 18.90
da Costa et al. 2019 89 68 157 243 171 414 3.24
Minghelli & Vicente 2019 NA NA 61 152 118 270 1.34
Tafuri et al. 2019 NA NA 181 325 129 454 NA
Feito, Burrows, & Tabb 2018 495 436 931 1566 1483 3049 0.74
Mehrab et al. 2017 157 95 252 266 183 449 NA
Montalvo et al. 2017 30 20 50 94 97 191 2.30
Moran et al. 2017 NA NA NA 66 51 117 2.10
Aune & Powers 2016 52 33 85 142 105 247 2.71
Sprey et al. 2016 109 67 176 323 243 566 NA
Summitt et al. 2016 NA NA 44 NA NA 187 1.94
Chachula, Cameron, & Svoboda 2015 NA NA 24 40 14 54 NA
Giordano & Weisenthal 2014 NA NA NA NA NA 386 2.40
Weisenthal et al. 2014 53 21 75 231 150 386 NA
Hak, Hodzovic, & Hickey 2013 NA NA 97 NA NA 132 3.10

4

https://docs.python.org/3.3/library/functions.html#zip

filter and select

Show only the studies which reported injury incidence (injuries per 1000 hours of exposure), and show only
this column and the authors.
CrossFit %>% filter(!is.na(Incidence)) %>% select(Study.Authors,Incidence) %>% kable()

Study.Authors Incidence
Hak, Hodzovic, & Hickey 3.10
Giordano & Weisenthal 2.40
Aune & Powers 2.71
Summitt et al. 1.94
Montalvo et al. 2.30
Moran et al. 2.10
Feito, Burrows, & Tabb 0.74
da Costa et al. 3.24
Minghelli & Vicente 1.34
Larsen et al. 10.60
Szeles et al. 18.90

In this situation, you could get the same result with the drop_na function from tidyr:
CrossFit %>% select(Study.Authors, Incidence) %>% drop_na()

mutate

Compute injury prevalence (the proportion of athletes injured in a sample) by gender:
CrossFit <- CrossFit %>% mutate(p.Male = x.Male / n.Male, p.Female = x.Female / n.Female,

p = x / n)
CrossFit %>% select(Study.Authors, Year, p.Male, p.Female, p) %>% kable()

Study.Authors Year p.Male p.Female p
Hak, Hodzovic, & Hickey 2013 NA NA 0.7348485
Giordano & Weisenthal 2014 NA NA NA
Weisenthal et al. 2014 0.2294372 0.1400000 0.1943005
Chachula, Cameron, & Svoboda 2015 NA NA 0.4444444
Aune & Powers 2016 0.3661972 0.3142857 0.3441296
Sprey et al. 2016 0.3374613 0.2757202 0.3109541
Summitt et al. 2016 NA NA 0.2352941
Mehrab et al. 2017 0.5902256 0.5191257 0.5612472
Montalvo et al. 2017 0.3191489 0.2061856 0.2617801
Moran et al. 2017 NA NA NA
Feito, Burrows, & Tabb 2018 0.3160920 0.2939987 0.3053460
Tafuri et al. 2019 NA NA 0.3986784
da Costa et al. 2019 0.3662551 0.3976608 0.3792271
Minghelli & Vicente 2019 NA NA 0.2259259
Alekseyev et al. 2020 0.3361630 0.3277027 0.3333333
Larsen et al. 2020 NA NA 0.1488095
Szeles et al. 2020 NA NA NA

As shown, R handles missing values gracefully with the special constant and reserved keyword NA.

5

summarize

Find the sum of two columns. Ignore NA values in the x column.
CrossFit %>% summarise(x.total = sum(x, na.rm = TRUE), n.total = sum(n)) %>%

mutate(p.total = x.total / n.total) %>% kable()

x.total n.total p.total
2453 8361 0.293386

ggplot2

ggplot2 is a powerful tool for creating beautiful plots. It is not trivial to learn, but you get away with
searching the Internet for what you need. ‘ggplot2 can accept input from the %>% operator, but you use the
+ operator to compose ggplot2 functions. ggplot2 can produce pie charts, but apparently pie charts have
fallen out of favor. Here are some simple examples:

Box Plot

CrossFit %>% ggplot(mapping = aes(x = n)) + geom_boxplot()

−0.4

−0.2

0.0

0.2

0.4

0 1000 2000 3000
n

Histogram

CrossFit %>% ggplot(aes(Incidence)) + geom_histogram(binwidth = 1)

Warning: Removed 6 rows containing non-finite values (stat_bin).

6

https://www.data-to-viz.com/caveat/pie.html
https://www.data-to-viz.com/caveat/pie.html

0

1

2

3

4

0 5 10 15 20
Incidence

co
un

t

Points

CrossFit %>% ggplot(aes(x = Year)) + geom_point(aes(y = p.Male, color="Male")) +
geom_point(aes(y = p.Female, color="Female"))

Warning: Removed 9 rows containing missing values (geom_point).

Warning: Removed 9 rows containing missing values (geom_point).

0.2

0.3

0.4

0.5

0.6

2014 2016 2018 2020
Year

p.
M

al
e colour

Female

Male

Basic Plots
Vanilla R also has basic plotting utilities, such as pie, hist, plot, and boxplot. These functions have a little
bit less functionality than ggplot2 and (at least by default) and less pretty, but the commands are simpler
and easier to figure out. The basic functions are actually more difficult to use when you want something that
isn’t trivial. For example, compare a

7

Mathematica’s Show command is a little easier to use. In R, it is not completely obvious how to show multiple
series on a single plot. Here is one way:
Base R
Injuries <- CrossFit %>% select(starts_with("x"), starts_with("n")) %>% drop_na()
plot(Injuries$n.Male, Injuries$x.Male, xlab = "Sample Size", ylab = "Injuries",

col = "blue", xlim = c(0,1600), ylim = c(0,500))
par(new = TRUE)
plot(Injuries$n.Female, Injuries$x.Female, xlab = "", ylab = "", col = "red",

axes = FALSE)
abline(lm(Injuries$x.Male ~ Injuries$n.Male), col = "blue")
abline(lm(Injuries$x.Female ~ Injuries$n.Female), col = "red")

0 500 1000 1500

0
20

0
40

0

Sample Size

In
ju

rie
s

ggplot2, arguably simpler for non-trivial plots.
Injuries %>% ggplot() + geom_point(aes(n.Male, x.Male, color = "Males")) +

geom_smooth(method = lm, formula = y ~ x, aes(n.Male, x.Male, color = "Males"),
se = FALSE) +

geom_point(aes(n.Female, x.Female, color = "Females")) +
geom_smooth(method = lm, formula = y ~ x, aes(n.Female, x.Female, color = "Females"),

se = FALSE) +
xlab("Sample Size") +
ylab("Injuries") +
labs(color = "Gender")

8

https://reference.wolfram.com/language/ref/Show.html

0

100

200

300

400

500

400 800 1200 1600
Sample Size

In
ju

rie
s Gender

Females

Males

R internals
If ever you need to negate any “restored my faith in humanity” clickbait then have a look in R’s source code.
Here is pnorm.c. Now I appreciate why it is an advantage for much of Julia to be itself implemented in Julia.

List Comprehension
I didn’t initially appreciate list comprehension in Python when I first encountered it. Now I love it.
Mathematica has a similar concept in its Array function and Julia provides the same syntax as Python.
There is a comprehenr library that gives R the same functionality.
fibonacci <- function(n) {

if (n == 0 | n == 1)
return(1)

else
return(fibonacci(n-1) + fibonacci(n-2))

}
to_vec(for(i in 0:20) fibonacci(i))

[1] 1 1 2 3 5 8 13 21 34 55 89 144
[13] 233 377 610 987 1597 2584 4181 6765 10946

Basic Statistics
Ok, so I have talked about R and compared it to a few other programming languages that I am comfortable
with. The remainder of this document is basically my notes for my future self to refer to once I have forgotten
everything.

Basic Stats

WorldSeries <- data.frame(Year = 1903:2019,
Length = c(8, NA, 5, 6, 5, 5, 7, 5, 6, 8, 5, 4, 5, 5, 6, 6, 8,

7, 8, 5, 6, 7, 7, 7, 4, 4, 5, 6, 7, 4, 5, 7, 6, 6, 5,

9

https://svn.r-project.org/R/trunk/src/nmath/pnorm.c
https://julialang.org/assets/blog/julia-dynamic-2012-tr.pdf
https://www.artima.com/weblogs/viewpost.jsp?thread=98196
https://reference.wolfram.com/language/ref/Array.html
https://docs.julialang.org/en/v1/manual/arrays/#man-comprehensions-1

4, 4, 7, 5, 5, 5, 6, 7, 7, 7, 6, 5, 4, 6, 7, 6, 4, 7,
7, 7, 7, 6, 7, 5, 7, 4, 7, 7, 4, 7, 7, 5, 5, 7, 7, 7,
5, 7, 4, 6, 6, 7, 6, 6, 7, 5, 5, 7, 7, 7, 5, 4, 4, 7,
6, 6, NA, 6, 6, 7, 4, 4, 5, 7, 7, 6, 4, 4, 5, 4, 5,
6, 5, 7, 4, 6, 7, 5, 7, 7, 5, 7))

see also mean(), median(), and range()
summary(WorldSeries)

Year Length
Min. :1903 Min. :4.000
1st Qu.:1932 1st Qu.:5.000
Median :1961 Median :6.000
Mean :1961 Mean :5.843
3rd Qu.:1990 3rd Qu.:7.000
Max. :2019 Max. :8.000
NA's :2
variance and sample standard deviation
var(WorldSeries$Length, na.rm = TRUE)

[1] 1.378795
sd(WorldSeries$Length, na.rm = TRUE)

[1] 1.174221
the hist() function returns an object with many useful fields.
h <- hist(WorldSeries$Length, breaks = 4:9, right = FALSE)

Histogram of WorldSeries$Length

WorldSeries$Length

F
re

qu
en

cy

4 5 6 7 8 9

0
20

40

data.frame(Length = (h$breaks)[-length(h$breaks)],
Frequency = h$counts,
Relative = h$density,
Cumulative = cumsum(h$density)) %>% kable()

Length Frequency Relative Cumulative
4 19 0.1652174 0.1652174
5 28 0.2434783 0.4086957

10

Length Frequency Relative Cumulative
6 24 0.2086957 0.6173913
7 40 0.3478261 0.9652174
8 4 0.0347826 1.0000000

Discrete Probability
The Binomal Formula for the probability of r successes in n trials is

P (x = r) =
(
n

r

)
prqn−r.

combination
for (i in 0:8) {

print(choose(i, 0:i))
}

[1] 1
[1] 1 1
[1] 1 2 1
[1] 1 3 3 1
[1] 1 4 6 4 1
[1] 1 5 10 10 5 1
[1] 1 6 15 20 15 6 1
[1] 1 7 21 35 35 21 7 1
[1] 1 8 28 56 70 56 28 8 1
factorial
factorial(0:8)

[1] 1 1 2 6 24 120 720 5040 40320
probability of getting EXACTLY 0-10 heads of 10 fair die rolls.
dbinom(x = 0:10, size = 10, prob = 1/6)

[1] 1.615056e-01 3.230112e-01 2.907100e-01 1.550454e-01 5.426588e-02
[6] 1.302381e-02 2.170635e-03 2.480726e-04 1.860544e-05 8.269086e-07
[11] 1.653817e-08
sum(dbinom(x = 0:10, size = 10, prob = 1/6))

[1] 1
cumulative probability of getting AT LEAST 0-10 heads.
cumsum(dbinom(x = 0:10, size = 10, prob = 1/6))

[1] 0.1615056 0.4845167 0.7752268 0.9302722 0.9845380 0.9975618 0.9997325
[8] 0.9999806 0.9999992 1.0000000 1.0000000
pbinom(q = 0:10, size = 10, prob = 1/6)

[1] 0.1615056 0.4845167 0.7752268 0.9302722 0.9845380 0.9975618 0.9997325
[8] 0.9999806 0.9999992 1.0000000 1.0000000
probability of getting MORE THAN 0-10 heads.
pbinom(q = 0:10, size = 10, prob = 1/6, lower.tail = FALSE)

11

[1] 8.384944e-01 5.154833e-01 2.247732e-01 6.972784e-02 1.546197e-02
[6] 2.438156e-03 2.675215e-04 1.944889e-05 8.434468e-07 1.653817e-08
[11] 0.000000e+00
1 - pbinom(q = 0:10, size = 10, prob = 1/6)

[1] 8.384944e-01 5.154833e-01 2.247732e-01 6.972784e-02 1.546197e-02
[6] 2.438156e-03 2.675215e-04 1.944889e-05 8.434468e-07 1.653817e-08
[11] 0.000000e+00
inverse of cumulative distribution function:
how many heads are in p% of 10 fair rolls?
qbinom(p = seq(0, 1, .1), size = 10, prob = 1/6)

[1] 0 0 1 1 1 2 2 2 3 3 10

In a binomial distribution µ = np and σ2 = nqp where q = 1− p.

Continuous Probability
The normal distribution’s probability density function is

1
σ
√

2π
e− 1

2 (x−µ
σ)2

.

A z-score is computed from

z = x− µ
σ

.

probability density function for a normal distribution of default mean = 0 and sd = 1.
plot(dnorm, xlim = c(-5,5))

−4 −2 0 2 4

0.
0

0.
2

0.
4

x

dn
or

m

cumulative probability
plot(pnorm, xlim = c(-5,5))

12

−4 −2 0 2 4

0.
0

0.
4

0.
8

x

pn
or

m

inverse of cumulative probability
plot(qnorm)

0.0 0.2 0.4 0.6 0.8 1.0

−
2

0
2

x

qn
or

m

Empirical Rule 68% of data lies within +/-1sd, 95% +/-2sd, 99.7% +/-3sd.
1 - 2 * pnorm(-1:-3)

[1] 0.6826895 0.9544997 0.9973002
if the average of some normal distribution is 100 and standard deviation is 20,
what is the probability of a quantity between 60 and 90?
pnorm(q = 90, mean = 100, sd = 20) - pnorm(q = 60, mean = 100, sd = 20)

[1] 0.2857874
integrate(function(x) dnorm(x, mean = 100, sd = 20), lower = 60, upper = 90)

0.2857874 with absolute error < 3.2e-15

13

normal probability plot. This was not really emphasized in my textbook. It is a way to
assess if your data forms a normal distribution.
qqnorm(c(CrossFit$p.Male, CrossFit$p.Female))

−2 −1 0 1 2

0.
2

0.
4

0.
6

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Central Limit Theorem: suppose a random variable is from any distribution. If a sample of size n is taken,
then the sample mean, x̄, becomes normally distributed as n increases.

The rest
The remainder of this paper is an extremely quick review of some important statistical functions in R. I have
run out of time and cannot make this review as comprehensive as I would like. Forgive me, future self!

I have run out of time to write these notes. So far I have only covered the first half of the class. The remainder
of the class covered the 1-prop test, 1 sample test for the mean (t-Test), 1-prop interval, t-interval, 2-prop
test, 2-sample paired t-Test, 2-sample t-Test, 2-sample t-interval, regression, r2, χ2 test, and ANOVA test.

Here are the short descriptions.

t-Test
The t test allows you to reason about small samples. R contains the functions dt, pt, and qt that largely
work the same way as dnorm, pnorm, and qnorm. The major difference is the degrees of freedom. Usually,
df = n− 1. You also have the wonderful t.test (which can accept a paired parameter) which does everything
for you.

t.test can help you answer whether µ1 = µ2 and estimate the difference in means,

(x̄1 − x̄2)− E < µ1 − µ2 < (x̄1 − x̄2) + E.

t.test(CrossFit$p.Male, CrossFit$p.Female)

##
Welch Two Sample t-test
##
data: CrossFit$p.Male and CrossFit$p.Female
t = 0.88263, df = 13.839, p-value = 0.3925

14

alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.0691794 0.1657546
sample estimates:
mean of x mean of y
0.3576225 0.3093349
we get a completely different result when we pair the male/female statistics by study.
t.test(CrossFit$p.Male, CrossFit$p.Female, paired = TRUE)

##
Paired t-test
##
data: CrossFit$p.Male and CrossFit$p.Female
t = 2.9296, df = 7, p-value = 0.02204
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
0.009312098 0.087263152
sample estimates:
mean of the differences
0.04828762

Proportion test
prop.test lets you compare proportions of “successes” and determine if they are the same.
unsurprisingly, some studies are have MUCH higher proportions than others.
prop.test(CrossFit$x.Male, CrossFit$n.Male)

##
8-sample test for equality of proportions without continuity
correction
##
data: CrossFit$x.Male out of CrossFit$n.Male
X-squared = 91.782, df = 7, p-value < 2.2e-16
alternative hypothesis: two.sided
sample estimates:
prop 3 prop 5 prop 6 prop 8 prop 9 prop 11 prop 13 prop 15
0.2294372 0.3661972 0.3374613 0.5902256 0.3191489 0.3160920 0.3662551 0.3361630

You can also use prop.test to find confidence intervals.
confidence interval from third study
prop.test(CrossFit$x[3], CrossFit$n[3], conf.level = 0.90)

##
1-sample proportions test with continuity correction
##
data: CrossFit$x[3] out of CrossFit$n[3], null probability 0.5
X-squared = 143.07, df = 1, p-value < 2.2e-16
alternative hypothesis: true p is not equal to 0.5
90 percent confidence interval:
0.1621469 0.2308752
sample estimates:
p
0.1943005

15

This means that, from the data from the third study, there is a 90% probability that the parameter proportion
of athletes injured in CrossFit is on the calculated interval.

Regression
R makes linear regressions really easy.
model <- lm(CrossFit$x.Male ~ CrossFit$n.Male)
summary(model)

##
Call:
lm(formula = CrossFit$x.Male ~ CrossFit$n.Male)
##
Residuals:
Min 1Q Median 3Q Max
-32.831 -8.115 -4.347 -0.023 60.352
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 14.43716 14.11245 1.023 0.346
CrossFit$n.Male 0.30906 0.02261 13.667 9.53e-06 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 28.82 on 6 degrees of freedom
(9 observations deleted due to missingness)
Multiple R-squared: 0.9689, Adjusted R-squared: 0.9637
F-statistic: 186.8 on 1 and 6 DF, p-value: 9.531e-06

χ2 Test
The χ2 test can tell if two variables are dependent using the equation

χ2 =
∑ (O − E)2

E

where O is the observed frequency and E is the expected frequency.
Is injury prevalence equal across all studies? Probably not.
chisq.test(x = CrossFit$x, y = CrossFit$n)

Warning in chisq.test(x = CrossFit$x, y = CrossFit$n): Chi-squared approximation
may be incorrect

##
Pearson's Chi-squared test
##
data: CrossFit$x and CrossFit$n
X-squared = 182, df = 169, p-value = 0.234
CrossFit %>% select(x, n) %>% drop_na() %>% ggplot(aes(n, x)) + geom_point()

16

0

250

500

750

0 1000 2000 3000
n

x

ANOVA
What is the probability that the mean engine size is the same for all number of cylinders?
aov(formula = disp ~ cyl, data = mtcars)

Call:
aov(formula = disp ~ cyl, data = mtcars)
##
Terms:
cyl Residuals
Sum of Squares 387454.1 88730.7
Deg. of Freedom 1 30
##
Residual standard error: 54.38465
Estimated effects may be unbalanced
summary(aov(formula = disp ~ cyl, data = mtcars))

Df Sum Sq Mean Sq F value Pr(>F)
cyl 1 387454 387454 131 1.8e-12 ***
Residuals 30 88731 2958

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Not very likely.

Version
This document was created using:
version

_
platform x86_64-w64-mingw32
arch x86_64
os mingw32

17

system x86_64, mingw32
status
major 4
minor 0.0
year 2020
month 04
day 24
svn rev 78286
language R
version.string R version 4.0.0 (2020-04-24)
nickname Arbor Day

18

	Introduction
	RStudio
	R Markdown
	Reading Data
	Tidyverse
	%>%
	Vectorized Functions
	dplyr
	arrange
	filter and select
	mutate
	summarize

	ggplot2
	Box Plot
	Histogram
	Points
	Basic Plots

	R internals
	List Comprehension
	Basic Statistics
	Basic Stats
	Discrete Probability

	Continuous Probability
	The rest
	t-Test

	Proportion test
	Regression
	\chi^2 Test
	ANOVA

	Version

