
How to find Gamma in a Power Law Distribution

William John Holden

26 June 2021

library(neo4r)
library(tidyverse)
library(knitr)

A graph 𝐺 = (𝑉 , 𝐸) forms a scale-free network when the degree of its vertices, deg(𝑣), fits a power law
distribution. In a power law distribution, the probability density function (PDF) 𝑃(𝑘) for vertices of degree
𝑘 is approximately 𝑘−𝛾.

𝑃(𝑘) ∼ 𝑘−𝛾

An alternative phrasing of the PDF definition is, “the probability of finding a random vertex 𝑣 with degree
deg(𝑣) = 𝑘 can be modeled by 𝑘−𝛾 where 𝛾 is a constant.”

For example, the connectedness of Game of Thrones characters is said to follow a power law distribution.
We will use the neo4r package.

First, we connect to the Neo4j database over HTTP. The neo4r package does not support the BOLT protocol.
con <- neo4j_api$new(
url = "http://localhost:7474",
user = "neo4j",
password = "powerlaw"

)

Now, we can run a Cypher query to tally the number of connections in or out of each vertex in the Game of
Thrones database.
tmp = "MATCH (u)-[r]-()
RETURN u.name as Name, COUNT(r) as Degree
ORDER BY Degree DESC" %>% call_neo4j(con)

neo4r confusingly returns two “tibble” objects from this query. Additionally, the values in each object are
named value.
df = tibble(Name = tmp$Name$value, Degree = tmp$Degree$value)
kable(head(df))

Name Degree
Tyrion 36
Jon 26
Sansa 26
Robb 25
Jaime 24
Tywin 22

1

Now, we can analyze the power law distribution in R. We first plot the data on a histogram using the
ggplot2 library.
df %>% ggplot(aes(x = Degree)) + geom_histogram(binwidth=1)

0

5

10

15

20

0 10 20 30
Degree

co
un

t

𝛾 is the exponent by which count decreases as Degree increases. We will compute a linear model to find 𝛾.
The tabulate function can count the number of occurrences for each degree in our data frame.
degree_dist = tibble(Degree = 1:max(df$Degree), Count = tabulate(df$Degree))
kable(head(degree_dist))

Degree Count
1 16
2 12
3 8
4 20
5 11
6 9

We add a column to degree_dist by computing density from each row. We will also drop rows where density
is zero.
degree_dist = degree_dist %>% mutate(Density = Count / sum(Count)) %>% filter(Density > 0)
kable(head(degree_dist))

2

Degree Count Density
1 16 0.1495327
2 12 0.1121495
3 8 0.0747664
4 20 0.1869159
5 11 0.1028037
6 9 0.0841121

We can find 𝛾 using a linear model. The command is simple:
model = lm(log(Density) ~ log(Degree), data = degree_dist)
summary(model)

##
Call:
lm(formula = log(Density) ~ log(Degree), data = degree_dist)
##
Residuals:
Min 1Q Median 3Q Max
-1.1098 -0.3505 -0.1083 0.4308 1.0759
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.3681 0.3568 -3.835 0.00103 **
log(Degree) -0.9989 0.1445 -6.915 1.03e-06 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 0.6045 on 20 degrees of freedom
Multiple R-squared: 0.7051, Adjusted R-squared: 0.6903
F-statistic: 47.82 on 1 and 20 DF, p-value: 1.025e-06

This technique is called change of variables. The idea is that if 𝑦 = 𝑎𝑥𝑏, then we let 𝑌 = log 𝑦 and 𝑋 = log 𝑥.
By substitution,

𝑦 = 𝑒𝑌 = 𝑎𝑥𝑏 = 𝑎𝑒𝑋𝑏 = 𝑎𝑒𝑏𝑋.

Take the logarithm of both sides to find

log 𝑒𝑌 = 𝑌 = log 𝑎𝑒𝑏𝑋 = log 𝑎 + log 𝑒𝑏𝑋 = log 𝑎 + 𝑏𝑋.

The slope of a linear model lm(log(y) ~ log(x)) model is therefore equal to 𝑏. For the Game of Thrones
power law distribution, the slope reveals that 𝛾 = −0.9989486.

3

