How to find Gamma in a Power Law Distribution

William John Holden

26 June 2021

library(neo4r)
library(tidyverse)
library(knitr)

A graph G = (V, E) forms a scale-free network when the degree of its vertices, deg(v), fits a power law
distribution. In a power law distribution, the probability density function (PDF) P(k) for vertices of degree
k is approximately k=7.

Plk) ~ k™

An alternative phrasing of the PDF definition is, “the probability of finding a random vertex v with degree
deg(v) = k can be modeled by k7 where « is a constant.”

For example, the connectedness of Game of Thrones characters is said to follow a power law distribution.
We will use the neo4r package.

First, we connect to the Neo4j database over HT'TP. The neo4r package does not support the BOLT protocol.

con <- neodj_api$new(
"http://localhost:7474",
"neo4j",
"powerlaw"

)

Now, we can run a Cypher query to tally the number of connections in or out of each vertex in the Game of
Thrones database.

tmp = "MATCH (w)-[r]-0)

RETURN u.name as Name, COUNT(r) as Degree

ORDER BY Degree DESC" %>% call_neo4j(con)

neodr confusingly returns two “tibble” objects from this query. Additionally, the values in each object are
named value.

df = tibble(tmp$Name$value, tmp$Degree$value)
kable (head (df))

Name Degree

Tyrion 36
Jon 26
Sansa 26
Robb 25
Jaime 24
Tywin 22

Now, we can analyze the power law distribution in R. We first plot the data on a histogram using the
ggplot2 library.

df %>, ggplot(aes(x = Degree)) + geom_histogram(binwidth=1)

20-
15-
5
3 10-
(&)
5-
0 L u L [l J [l
0 10 20 30
Degree

~ is the exponent by which count decreases as Degree increases. We will compute a linear model to find .
The tabulate function can count the number of occurrences for each degree in our data frame.

degree_dist = tibble(Degree = 1:max(df$Degree), Count = tabulate(df$Degree))
kable(head(degree_dist))

Degree Count

16
12

20
11

ST W N =

We add a column to degree_dist by computing density from each row. We will also drop rows where density
is zero.

degree_dist = degree_dist %>, mutate(Density = Count / sum(Count)) %>% filter(Demnsity > 0)
kable(head(degree_dist))

Degree Count Density

16 0.1495327
12 0.1121495
8 0.0747664
20 0.1869159
11 0.1028037
9 0.0841121

S T W N =

We can find v using a linear model. The command is simple:

model = 1lm(log(Density) ~ log(Degree), degree_dist)
summary (model)

##

Call:

1m(formula = log(Density) ~ log(Degree), data = degree_dist)
##

Residuals:

#i Min 1Q Median 3Q Max

-1.1098 -0.3505 -0.1083 0.4308 1.0759

##

Coefficients:

#it Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.3681 0.3568 -3.835 0.00103 *x*

log(Degree) -0.9989 0.1445 -6.915 1.03e-06 **x*

##H ——-

Signif. codes: O '*xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##

Residual standard error: 0.6045 on 20 degrees of freedom
Multiple R-squared: 0.7051, Adjusted R-squared: 0.6903
F-statistic: 47.82 on 1 and 20 DF, p-value: 1.025e-06

This technique is called change of variables. The idea is that if y = az?, then we let Y = logy and X = log .
By substitution,

b
Yy = BY = (be = (IBX = aebX.

Take the logarithm of both sides to find

logeY =Y =logae’™ = loga + loge®X =loga + bX.

The slope of a linear model 1m(log(y) ~ log(x)) model is therefore equal to b. For the Game of Thrones
power law distribution, the slope reveals that v = —0.9989486.

